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High-Dimensional Statistical Inference

* Find hidden structure in random graph
E.g. planted clique in G(n,1/2), stochastic block model, graph matching

 Find low-dimensional structure in random data

E.g. spiked matrix models, matrix factorization, tensor decomposition

* Regression / linear models
E.g. compressed sensing / sparse regression, phase retrieval

Common features: large input, many unknowns, planted signal



Splked Wigner I\/l()del signal-to-noise ratio s > 0

Y = > 00" + 7
- yn

observed data, n-by-n matrix

rank-1 “signal’ lid Gaussian “noise

6 — unknown vector with entries iid from known fixed prior m

Goal: given Y, estimate 6
Simple “signal plus noise” model, testbed



What Are The Best Algorithms?

“Statistical Mechanics” “Theoretical Computer Science”
Belief Propagation (BP) (1523 _» Sum-of-Squares (SoS)

Approximate Message l[HKPRSS'U]

Passing (AMP) Spectral Methods
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(OGP) —, Low-Degree

—»> Polynomials

\ Free Energy Barriersj [BAHSWZ'22] \ 1 /

‘ [BBHLS 20]
Statistical Query (SQ)




A Unified Theory?

Many connections, but also caveats and counterexamples...
« Detection vs recovery vs optimization vs refutation vs sampling

* Physics predictions are “wrong” for tensor PCA (!)

“Redemption” !
« Kikuchi hierarchy (in place of Bethe free energy)

* Averaged gradient descent



AMP for Spiked Wigner Model v =-=66"+z
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Main Result

AMP has optimal MSE among all poly-time algorithms
Theorem (Montanari, W 22)
AMP has optimal MSE among all

AMP (with const num iter) takes the form (8,(Y), ..., 8,,(Y)) where
6, is a const-deg multivariate polynomial in the entries of ¥

We show AMP is the best estimator of this form; sharp constant



Comments
Biased prior: E[rr] # 0
Open: mean-zero prior r, O(logn) iterations/degree

Open: rule out higher degree polynomials
Conjecture: need degree n'=°M to beat AMP

AMP is sub-optimal for some problems (tensor PCA, ...)

Proof suggests how to test if AMP is optimal for a given problem



Low-Degree Estimation Lower Bounds

Given Y, estimate 6,

Want to understand MMSE. = CilnfD E[(p(Y) — 0,)?]
p deg

« Planted submatrix, planted dense subgraph
« Hypergraphic planted dense subgraph

« Tensor decomposition

This work: exact value of lim lim MMSE_,

D—ooo n—oo



Y = \/%HQT +7Z
Proof Sketch: AMP vs Low-Deg
.  AMP is as powerful as any “tree-shaped” polynomial

Il. Tree-shaped polynomials are as powerful as all
polynomials (of the same degree)

tree non-tree
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Y =—00"+7Z
. AMP vs Tree Polynomials

Claim: lim lim MSEAMP = lim lim MMSEZ[®®

t— 00 n—oo D—o00 n—oo

(=) AMP is a tree polynomial
(<) Consider the best tree polynomial, WLOG symmetric

Given any symmetric const-deg tree polynomial, can construct
a “message-passing” (MP) scheme to compute it

Prior work: AMP has best MSE among all MP schemes



Y=\/%99T+Z
Il. Tree Poly vs All Poly

Remains to prove: lim MMSE!L®® = lim MMSE_., (rest of talk)

n—>00 n—>0o

Conclude:

lim lim MSEAMP = lim lim MMSEIL® = lim lim MMSE.,

t—00 nNn—>oo D—>00 n—>oo D—>00 n—oo



S
Y =—6060T +Z

Il. Tree Poly vs All Poly

Remains to prove: lim MMSE!f®® = lim MMSE_,

n—>00 n—>0o

MMSEgp = inf E[(p(Y) - 0,)%] = E[6f] —c"M~'c

where:
{H,} — basis for (symmetric) const-deg polynomials

¢y = E[Ha(Y) - 04] Myp == E[Ha(Y) - Hg(Y)]



Goal: lim MMSE.L® = lim MMSE_,

n—oo n—oo

MMSE.p = E[67

¢y = E[Hy(Y) - 64] Myp = E

tree non-tree

Hy(Y) - Hp(Y)]

tree | P R 0(1)

o(1) d| 0(1)

non-tree| RT | @ o(1) |8(1) el 0(1)

E[le] —MMSE.p, =c' M lc=d"P1d" = [E[Ql] MMSETree



Summary

Equivalence of constant-iter AMP and constant-degree
polynomials in the spiked Wigner model with any fixed prior

AMP = tree polynomials = all polynomials

Key property of Wigner model for “tree = all”: block diagonal
Use this to test if AMP is optimal for a given problem?

Evidence for AMP conjecture; connection stat mech < TCS
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