New Techniques for Low-Degree Lower Bounds

Alex Wein

UC Davis

Based on joint works with: Tselil Schramm; Cindy Rush, Fiona Skerman, Dana Yang; Pravesh Kothari, Santosh Vempala, Jeff Xu

chosen at random

- All have poly-time algorithms when $k = \Omega(\sqrt{n})$ [Alon, Krivelevich, Sudakov '98]
-
- If graph has a k-clique, output is *always* MAYBE • If graph is drawn from $\mathbb Q$, output is NO w.h.p. refutation task
- **Refutation**: given G ∼ ℚ, *prove* there is no k-clique

• No poly-time algorithms known when $k = o(\sqrt{n})$

• **Recovery**: given G ∼ ℙ, identify the clique vertices

Average-Case Algorithmic Tasks

-
- **Detection**: distinguish $\mathbb P$ vs $\mathbb Q$ w.h.p.

Detection

How to Define "Success" for an LDP Algorithm?

- **Detection**: f "strongly separates" P and Q $\bigl|\max\{\text{Var}_{\mathbb{P}}(f),\text{Var}_{\mathbb{Q}}(f)\}\bigr|=o(\bigl|\text{E}_{\mathbb{P}}[f]-\text{E}_{\mathbb{Q}}[f]\rvert)$
- **Recovery**: small mean squared error $E_{\mathbb{P}}[(f(A) - x)^2] \ll Var_{\mathbb{P}}(x), \quad x = \mathbb{1}_{1 \in \text{clique}}$
- **Refutation**: f "strongly separates" Q and R_k
	- If A has a k-clique then $f(A) \geq 1$
	- $E_{\mathbb{Q}}[f^2] = o(1)$

property: exists a k-clique

 $\mathbb Q$

 $n \rightarrow \infty$

 f concreted f separated

- These are natural *sufficient* conditions
- Won't cover: random optimization problems [Gamarnik, Jagannath, **W** '20; **W** '21; Bresler, Huang '21; Huang, Sellke '21; …]

Prototypical Result: Planted Clique

Theorem (lower bound) If $k \leq n^{1/2-\epsilon}$, for some $D = D_n = \omega(\log n)$,

- (Detection) no degree-D polynomial strongly separates \mathbb{P} , \mathbb{Q} [Hopkins '18; Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
- (Recovery) no degree-D polynomial has small MSE [Schramm, **W** '22]
- (Refutation) no degree-D polynomial strongly separates \mathbb{Q} , R_k [Kothari, Vempala, **W**, Xu '23]

Theorem (upper bound) If $k \geq cn^{1/2}$, for some $D = D_n = O(\log n)$,

- (Detection) some degree-D polynomial strongly separates \mathbb{P} , \mathbb{Q}
- (Recovery) some degree-D polynomial has small MSE
- (Refutation) some degree-D polynomial strongly separates \mathbb{Q} , R_k

Focus of This Talk

- Not the focus of this talk:
	- Failure of $O(\log n)$ -degree polynomials is "evidence" for inherent hardness
	- Relation to sum-of-squares, statistical query model, …
	- State-of-the-art results for specific problems
- Instead:
	- Proof ideas for lower bounds (failure of all degree-D algorithms)

Reformulation as a Ratio

- **Detection**: to rule out strong separation of \mathbb{P} , Q, suffices to show $\chi^2_{\leq D}(\mathbb{P} \|\mathbb{Q}) + 1 \coloneqq \max_{f \text{ does } \ell}$ f deg D $\mathsf{\bar{E}}_{\bigsqcup} [f]$ $E_{\mathbb{Q}}[f^2]$ $= O(1) \hspace{20pt} \| L^{\leq D} \| \hspace{0.1in} \text{e.g.}$ [Hopkins '18]
	- or $\chi_{\leq D}^2(\mathbb{P}'\|\mathbb{Q})=O(1)$ for conditional \mathbb{P}' [Bandeira, El Alaoui, Hopkins, Schramm, W, Zadik '22; Coja-Oghlan, Gebhard, Hahn-Klimroth, **W**, Zadik '22; Dhawan, Mao, **W** '23]
- **Recovery**: to rule out small MSE, suffices to show $\mathrm{E}_{\bigoplus}[f\!\cdot\!\mathrm{x}]$
	- max f deg D E_{\rm} [f^2 $\ll \cdots$ $x = \mathbb{1}_{1 \in \text{clique}}$
- **Refutation**: to rule out strong separation of \mathbb{Q} , R_k , suffices to construct a distribution $\widetilde{\mathbb{P}}$ supported on R_k , and show $\chi_{\leq D}^2(\widetilde{\mathbb{P}}\|\mathbb{Q})=O(1)$

Explicit Solution

- In any case, our goal is to upper-bound something of the form
	- $\text{Adv}_{\leq D} \coloneqq \max_{\text{fdiff}}$ f deg D $\mathbb{E} \mathbb{P} [f \cdot y]$ $E_{\text{III}}[f^2]$
		- For detection: $y = 1$, $\mathbb{H} = \mathbb{Q}$
		- For recovery: $y = x$, $\mathbb{H} = \mathbb{P}$
- Choose a basis $\{h_\alpha\}$ for degree-D polynomials, expand $f(A) = \sum_\alpha \hat{f}_\alpha h_\alpha(A)$
- Define $c_{\alpha} = \mathbb{E}_{\mathbb{P}}[h_{\alpha} \cdot y]$ and $P_{\alpha\beta} = \mathbb{E}_{\mathbb{H}}[h_{\alpha} \cdot h_{\beta}]$
- Conclude:

$$
Adv_{\leq D} = \max_{\hat{f}} \frac{c^{\top} \hat{f}}{\sqrt{\hat{f}^{\top} P \hat{f}}} = \sqrt{c^{\top} P^{-1} c}
$$

When III is a Product Measure...

- Recall: $Adv_{\leq D} := \max_{f \text{ decay}}$ f deg D $\mathbb{E}_{\mathbb{P}}[f \cdot y]$ $E_{\text{III}}[f^2]$ $=\sqrt{c^{\top}P^{-1}c}$ • $c_{\alpha} = \mathbb{E}_{\mathbb{P}}[h_{\alpha} \cdot y], P_{\alpha\beta} = \mathbb{E}_{\mathbb{H}}[h_{\alpha} \cdot h_{\beta}]$
- If H has independent coordinates (product measure), choose $\{h_\alpha\}$ to be an orthonormal basis of polynomials: $E_{\text{HII}}[h_{\alpha} \cdot h_{\beta}] = \mathbb{1}_{\alpha = \beta}$
	- $P = I$, $Adv_{\leq D} = ||c||$
	- Gives low-degree lower bounds for detection: $\mathbb P$ vs product measure $\mathbb Q$ [Hopkins, Steurer '17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17; …]
- This talk: what to do when H is not a product measure
	- Recovery: $\mathbb{H} = \mathbb{P}$ (mixture of product measures) [Schramm, **W** '22]
	- Planted-vs-planted testing, e.g. distinguish 1 planted clique vs 2 planted cliques [Rush, Skerman, **W**, Yang '23; Kothari, Vempala, **W**, Xu '23]

Overview

- I'll cover two approaches
	- Jensen trick [Schramm, **W** '22; …]
	- Tensor decomposition [**W** '23]
- I'll present these two in a unified way (credit: Jon Niles-Weed)
- Setup
	- Goal: lower bound on $E_{\mathbb{H}}[f^2] = ||f||^2$
	- Inner product / norm for functions: $\langle f, g \rangle \coloneqq E_{\mathbb{H}}[f \cdot g]$, $\|f\| \coloneqq \sqrt{\langle f, f \rangle}$
	- For orthonormal basis $\{t_\gamma\}$, $\|f\|^2 = \sum_\gamma \bigl\langle t_\gamma,f \bigr\rangle^2$
	- For orthonormal set $\{t_\gamma\}$, $\, \|f\|^2 \geq \sum_{\gamma} \bigl\langle t_\gamma,f \bigr\rangle^2$

- Blueprint clique edges iid Bernoulli(1/2)
- Example: $\mathbb H$ is planted clique distribution $A = X \vee Z$
- Write $f(A) = g(X, Z)$; every f induces some g
- Choose some orthonormal set of functions $\{t_{\nu}(X, Z)\}$
- $||f||^2 = ||g||^2 \ge \sum_{\gamma} \langle t_{\gamma}, g \rangle$ 2 $=:\|\mathbf{w}\|^2 \hspace{0.2in} w_{\gamma} := \langle t_{\gamma}, g \rangle = \mathrm{E}_{X,Z}\big[t_{\gamma}\cdot g\big]$
- How does w depend on \hat{f} ? Recall $f(A) = \sum_{\alpha} \hat{f}_{\alpha} h_{\alpha}(A)$ • $w = M \hat{f}$ where $M_{\nu\alpha} = \langle t_{\nu}, h_{\alpha} \rangle$
- Will need explicit left inverse M^+ for M, i.e., $M^+M = I$

•
$$
\text{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{\mathbb{P}}[f \cdot y]}{\sqrt{\mathbb{E}_{\mathbb{H}}[f^2]}} \leq \max_{\hat{f}} \frac{c^{\mathsf{T}} \hat{f}}{\|w\|} = \max_{\hat{f}} \frac{c^{\mathsf{T}} M^+ M \hat{f}}{\|M \hat{f}\|} \leq \|c^{\mathsf{T}} M^+\|
$$

More Details: Planted Clique clique edges iid Bernoulli(1/2)

- Example: $\mathbb H$ is planted clique distribution $A = X \vee Z$
- Fourier characters $\alpha \subseteq \binom{[n]}{2}$ $\binom{n}{2}$, $\chi_{\alpha}(A) = \prod_{(i,j)\in\alpha} (-1)^{A_{ij}}$
- $\{\chi_{\alpha}(Z)\}\$ are orthonormal, $\{\chi_{\alpha}(A)\}\$ are not
- Choose $h_{\alpha}(A) = \chi_{\alpha}(A)$, $|\alpha| \le D$ -- basis for f
- Choose $t_{\gamma}(X, Z) = \chi_{\gamma}(Z)$, $|\gamma| \leq D$ -- orthonormal set of functions
- Fortunately, M is upper-triangular: $M_{\gamma\alpha} := \langle t_{\gamma}, h_{\alpha} \rangle = 0$ unless $\gamma \subseteq \alpha$ • Can find explicit inverse $M^+ = M^{-1}$
- $Adv_{\leq D} \leq ||c^{\top}M^{-1}$

Tensor Decomposition

- Given $n \times n \times n$ tensor $T = (1+\delta) a_1^{\otimes 3} + \sum_{j=2}^r a_j^{\otimes 3}$ (ℙ)
	- $a_j \in \{\pm 1\}^n$ iid Rademacher
- Goal: recover a_{11}
- Poly-time when $r \ll n^{3/2}$ [Ma, Shi, Steurer '16; Ding, d'Orsi, Liu, Tiegel, Steurer '22]
- Theorem (informal) [W '23]: low-degree MMSE is small when $r \ll n^{3/2}$, trivial when $r \gg n^{3/2}$
- Recall: suffices to upper-bound

$$
\max_{f \deg D} \frac{\operatorname{Ep}[f \cdot a_{11}]}{\sqrt{\operatorname{Ep}[f^2]}}
$$

More Details: Tensor Decomposition

- Recall: $T=(1+\delta)a_1^{\otimes 3}+\sum_{j=2}^ra_j^{\otimes 3},\ \ a_j\in \{\pm 1\}^n$ iid Rademacher
- Write $f(T) = g(a)$; every f induces some g
- Choose $\{h_{\alpha}(T)\}\$ monomial basis -- basis for f
- Choose $t_{\gamma}(a) = \chi_{\gamma}(a)$ Fourier characters -- orthonormal set (basis)
- Some freedom to choose left inverse M^+
	- Left inverse: procedure for finding $\{h_{\alpha}(T)\}$ -coefficients given $\{t_{\gamma}(a)\}$ coefficients
	- Fortunately a simple recursive construction for M^+ works
- $Adv_{\leq D} \leq ||c^{\top}M^+$

Comments

- Other methods not mentioned in this talk:
	- Exact constant-degree MMSE for spiked Wigner via AMP [Montanari, **W** '22]
	- Annealed Franz-Parisi potential / low-overlap chi-squared [Bandeira, El Alaoui, Hopkins, Schramm, **W**, Zadik '22]
- Open question: random regular graphs?

Thanks!