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ℚ:   G(n,1/2) ℙ:   G(n,1/2) + {k-clique}

• Detection: distinguish ℙ vs ℚ w.h.p.

• Recovery: given G ∼ ℙ, identify the clique vertices

• Refutation: given G ∼ ℚ, prove there is no k-clique
• If graph has a k-clique, output is always MAYBE
• If graph is drawn from ℚ, output is NO w.h.p.

• All have poly-time algorithms when 𝑘 = Ω( 𝑛) [Alon, Krivelevich, Sudakov ‘98]

• No poly-time algorithms known when 𝑘 = 𝑜( 𝑛)

Average-Case Algorithmic Tasks

refutation task

chosen at random

3 tasks not equivalent in general!

Detection

Recovery Refutation



• Degree-D algorithm: multivariate polynomial of degree D

• Examples:
• Edge count: 𝑓 𝐴 = σ𝑖<𝑗 𝐴𝑖𝑗
• Triangle count: 𝑓 𝐴 = σ𝑖<𝑗<𝑘𝐴𝑖𝑗𝐴𝑖𝑘𝐴𝑗𝑘
• Degree of vertex 1: 𝑓 𝐴 = σ1<𝑖𝐴1𝑖
• Count triangles containing vertex 1: 𝑓 𝐴 = σ1<𝑖<𝑗 𝐴1𝑖𝐴1𝑗𝐴𝑖𝑗
• Spectral (approx): 𝑓 𝐴 = Tr 𝐴2𝑚 = σ𝑖 𝜆𝑖

2𝑚 ≈ 𝜆max
2𝑚

Low-Degree Polynomial (LDP) Algorithms

Input: graph Output: number

𝑓: {0,1}
𝑛
2 → ℝ

proxy for runtime
deg O(1) ≲ poly-time ≲ deg O(log n)

𝑛𝐷 terms captures 
spectral, AMP, …

[Hopkins, Steurer ’17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; …]



• Detection: 𝑓 “strongly separates” ℙ and ℚ

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜(|Eℙ 𝑓 − Eℚ[𝑓]|)

• Recovery: small mean squared error
Eℙ (𝑓 𝐴 − 𝑥 2] ≪ Varℙ 𝑥 ,    𝑥 = 𝟙1∈clique

• Refutation: 𝑓 “strongly separates” ℚ and 𝑅𝑘
• If 𝐴 has a k-clique then 𝑓 𝐴 ≥ 1

• Eℚ 𝑓2 = 𝑜(1)

• These are natural sufficient conditions

• Won’t cover: random optimization problems
[Gamarnik, Jagannath, W ’20; W ’21; Bresler, Huang ’21; Huang, Sellke ’21; …]

How to Define “Success” for an LDP Algorithm?
ℚ ℙ

𝑓 𝑓
separated

property: exists a k-clique

𝑛 → ∞



Theorem (lower bound) If 𝑘 ≤ 𝑛1/2−𝜖, for some 𝐷 = 𝐷𝑛 = 𝜔(log 𝑛),

• (Detection) no degree-D polynomial strongly separates ℙ, ℚ
[Hopkins ’18; Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

• (Recovery) no degree-D polynomial has small MSE
[Schramm, W ‘22]

• (Refutation) no degree-D polynomial strongly separates ℚ, 𝑅𝑘
[Kothari, Vempala, W, Xu ‘23]

Theorem (upper bound) If 𝑘 ≥ 𝑐𝑛1/2, for some 𝐷 = 𝐷𝑛 = 𝑂(log 𝑛),

• (Detection) some degree-D polynomial strongly separates ℙ, ℚ

• (Recovery) some degree-D polynomial has small MSE

• (Refutation) some degree-D polynomial strongly separates ℚ, 𝑅𝑘

Prototypical Result: Planted Clique



• Not the focus of this talk:
• Failure of 𝑂(log 𝑛)-degree polynomials is “evidence” for inherent hardness

• Relation to sum-of-squares, statistical query model, …

• State-of-the-art results for specific problems

• Instead:
• Proof ideas for lower bounds (failure of all degree-D algorithms)

Focus of This Talk



• Detection: to rule out strong separation of ℙ, ℚ, suffices to show

𝜒≤𝐷
2 ℙԡℚ + 1 ≔ max

𝑓 deg 𝐷

Eℙ[𝑓]

Eℚ 𝑓2
= 𝑂(1) 𝐿≤𝐷 e.g. [Hopkins ’18]

• or 𝜒≤𝐷
2 ℙ′ԡℚ = 𝑂(1) for conditional ℙ′ [Bandeira, El Alaoui, Hopkins, Schramm, W, 

Zadik ’22; Coja-Oghlan, Gebhard, Hahn-Klimroth, W, Zadik ’22; Dhawan, Mao, W ‘23]

• Recovery: to rule out small MSE, suffices to show

max
𝑓 deg 𝐷

Eℙ[𝑓⋅𝑥]

Eℙ 𝑓2
≪ ⋯ 𝑥 = 𝟙1∈clique

• Refutation: to rule out strong separation of ℚ, 𝑅𝑘, suffices to construct
a distribution ෩ℙ supported on 𝑅𝑘, and show 𝜒≤𝐷

2 ෩ℙԡℚ = 𝑂(1)

Reformulation as a Ratio



• In any case, our goal is to upper-bound something of the form

Adv≤𝐷 ≔ max
𝑓 deg 𝐷

Eℙ[𝑓⋅𝑦]

Eℍ 𝑓2

• For detection: 𝑦 = 1, ℍ = ℚ
• For recovery: 𝑦 = 𝑥, ℍ = ℙ

• Choose a basis {ℎ𝛼} for degree-D polynomials, expand 𝑓(𝐴) = σ𝛼
መ𝑓𝛼ℎ𝛼(𝐴)

• Define 𝑐𝛼 = Eℙ[ℎ𝛼 ⋅ 𝑦] and 𝑃𝛼𝛽 = Eℍ[ℎ𝛼 ⋅ ℎ𝛽]

• Conclude:

Adv≤𝐷 = max
መ𝑓

𝑐⊤ መ𝑓

መ𝑓⊤𝑃 መ𝑓

= 𝑐⊤𝑃−1𝑐

Explicit Solution



• Recall: Adv≤𝐷 ≔ max
𝑓 deg 𝐷

Eℙ[𝑓⋅𝑦]

Eℍ 𝑓2
= 𝑐⊤𝑃−1𝑐

• 𝑐𝛼 = Eℙ[ℎ𝛼 ⋅ 𝑦],  𝑃𝛼𝛽 = Eℍ[ℎ𝛼 ⋅ ℎ𝛽]

• If ℍ has independent coordinates (product measure), choose {ℎ𝛼} to 
be an orthonormal basis of polynomials: Eℍ ℎ𝛼 ⋅ ℎ𝛽 = 𝟙𝛼=𝛽
• 𝑃 = 𝐼,  Adv≤𝐷 = 𝑐
• Gives low-degree lower bounds for detection: ℙ vs product measure ℚ

[Hopkins, Steurer ’17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; …]

• This talk: what to do when ℍ is not a product measure
• Recovery: ℍ = ℙ (mixture of product measures)  [Schramm, W ’22]

• Planted-vs-planted testing, e.g. distinguish 1 planted clique vs 2 planted cliques
[Rush, Skerman, W, Yang ’23; Kothari, Vempala, W, Xu ‘23]

When ℍ is a Product Measure…



• I’ll cover two approaches
• Jensen trick  [Schramm, W ‘22; …]

• Tensor decomposition  [W ‘23]

• I’ll present these two in a unified way  (credit: Jon Niles-Weed)

• Setup
• Goal: lower bound on Eℍ 𝑓2 = 𝑓 2

• Inner product / norm for functions:  𝑓, 𝑔 ≔ Eℍ[𝑓 ⋅ 𝑔],  𝑓 ≔ 𝑓, 𝑓

• For orthonormal basis {𝑡𝛾},  𝑓
2 = σ𝛾 𝑡𝛾 , 𝑓

2

• For orthonormal set {𝑡𝛾},  𝑓
2 ≥ σ𝛾 𝑡𝛾 , 𝑓

2

Overview



• Example: ℍ is planted clique distribution 𝐴 = 𝑋 ∨ 𝑍

• Write 𝑓 𝐴 = 𝑔 𝑋, 𝑍 ; every 𝑓 induces some 𝑔

• Choose some orthonormal set of functions {𝑡𝛾(𝑋, 𝑍)}

• 𝑓 2 = 𝑔 2 ≥ σ𝛾 𝑡𝛾, 𝑔
2
=: 𝑤 2 𝑤𝛾 ≔ 𝑡𝛾 , 𝑔 = E𝑋,𝑍 𝑡𝛾 ⋅ 𝑔

• How does 𝑤 depend on መ𝑓?                       Recall 𝑓(𝐴) = σ𝛼
መ𝑓𝛼ℎ𝛼(𝐴)

• 𝑤 = 𝑀 መ𝑓 where  𝑀𝛾𝛼 = 𝑡𝛾 , ℎ𝛼

• Will need explicit left inverse 𝑀+ for 𝑀, i.e., 𝑀+𝑀 = 𝐼

• Adv≤𝐷 ≔ max
𝑓 deg 𝐷

Eℙ[𝑓⋅𝑦]

Eℍ 𝑓2
≤ max

መ𝑓

𝑐⊤ መ𝑓

𝑤
= max

መ𝑓

𝑐⊤𝑀+𝑀 መ𝑓

𝑀 መ𝑓
≤ 𝑐⊤𝑀+

Blueprint iid Bernoulli(1/2)clique edges



• Example: ℍ is planted clique distribution 𝐴 = 𝑋 ∨ 𝑍

• Fourier characters 𝛼 ⊆ [𝑛]
2

,  𝜒𝛼 𝐴 = ς 𝑖,𝑗 ∈𝛼 −1 𝐴𝑖𝑗

• {𝜒𝛼(𝑍)} are orthonormal, {𝜒𝛼(𝐴)} are not

• Choose ℎ𝛼 𝐴 = 𝜒𝛼(𝐴),  𝛼 ≤ 𝐷 -- basis for 𝑓

• Choose 𝑡𝛾 𝑋, 𝑍 = 𝜒𝛾(𝑍),  𝛾 ≤ 𝐷 -- orthonormal set of functions

• Fortunately, 𝑀 is upper-triangular: 𝑀𝛾𝛼 ≔ 𝑡𝛾, ℎ𝛼 = 0 unless 𝛾 ⊆ 𝛼
• Can find explicit inverse 𝑀+ = 𝑀−1

• Adv≤𝐷 ≤ 𝑐⊤𝑀−1

More Details: Planted Clique clique edges iid Bernoulli(1/2)



• Given 𝑛 × 𝑛 × 𝑛 tensor 𝑇 = 1 + 𝛿 𝑎1
⊗3 + σ𝑗=2

𝑟 𝑎𝑗
⊗3 (ℙ)

• 𝑎𝑗 ∈ ±1 𝑛 iid Rademacher

• Goal: recover 𝑎11

• Poly-time when 𝑟 ≪ 𝑛3/2 [Ma, Shi, Steurer ’16; Ding, d’Orsi, Liu, Tiegel, Steurer ‘22]

• Theorem (informal) [W ‘23]: low-degree MMSE is small when 𝑟 ≪ 𝑛3/2, 
trivial when 𝑟 ≫ 𝑛3/2

• Recall: suffices to upper-bound

max
𝑓 deg 𝐷

Eℙ[𝑓 ⋅ 𝑎11]

Eℙ 𝑓2

Tensor Decomposition



• Recall:   𝑇 = 1 + 𝛿 𝑎1
⊗3 + σ𝑗=2

𝑟 𝑎𝑗
⊗3,   𝑎𝑗 ∈ ±1 𝑛 iid Rademacher

• Write 𝑓 𝑇 = 𝑔 𝑎 ; every 𝑓 induces some 𝑔

• Choose {ℎ𝛼(𝑇)} monomial basis  -- basis for 𝑓

• Choose 𝑡𝛾 𝑎 = 𝜒𝛾(𝑎) Fourier characters -- orthonormal set (basis)

• Some freedom to choose left inverse 𝑀+

• Left inverse: procedure for finding {ℎ𝛼(𝑇)}-coefficients given {𝑡𝛾(𝑎)}-
coefficients

• Fortunately a simple recursive construction for 𝑀+ works

• Adv≤𝐷 ≤ 𝑐⊤𝑀+

More Details: Tensor Decomposition



Comments

• Other methods not mentioned in this talk:
• Exact constant-degree MMSE for spiked Wigner via AMP  [Montanari, W ‘22]

• Annealed Franz-Parisi potential / low-overlap chi-squared
[Bandeira, El Alaoui, Hopkins, Schramm, W, Zadik ’22]

• Open question: random regular graphs?

Thanks!
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