New Techniques for Low-Degree Lower Bounds

Alex Wein

Based on joint works with: Tselil Schramm; Cindy Rush, Fiona Skerman, Dana Yang; Pravesh Kothari, Santosh Vempala, Jeff Xu

3 tasks not equivalent in general!

Recovery

Refutation

- All have poly-time algorithms when $k = \Omega(\sqrt{n})$ [Alon, Krivelevich, Sudakov '98]
- If graph has a k-clique, output is *always* MAYBE refutation task • If graph is drawn from Q, output is NO w.h.p.
- **Refutation**: given $G \sim \mathbb{Q}$, *prove* there is no k-clique

• No poly-time algorithms known when $k = o(\sqrt{n})$

- **Detection**: distinguish \mathbb{P} vs \mathbb{Q} w.h.p. • **Recovery**: given $G \sim \mathbb{P}$, identify the clique vertices

Average-Case Algorithmic Tasks

Q: G(n,1/2)

 $\mathbb{P}: G(n, 1/2) + \{k-clique\}$

Detection

chosen at random

How to Define "Success" for an LDP Algorithm?

- Detection: f "strongly separates" \mathbb{P} and \mathbb{Q} $\sqrt{\max\{\operatorname{Var}_{\mathbb{P}}(f), \operatorname{Var}_{\mathbb{Q}}(f)\}} = o(|\operatorname{E}_{\mathbb{P}}[f] - \operatorname{E}_{\mathbb{Q}}[f]|)$
- **Recovery**: small mean squared error $E_{\mathbb{P}}[(f(A) - x)^2] \ll \operatorname{Var}_{\mathbb{P}}(x), \quad x = \mathbb{1}_{1 \in \text{clique}}$
- Refutation: f "strongly separates" \mathbb{Q} and $\underline{R_k}$
 - If A has a k-clique then $f(A) \ge 1$
 - $\mathbb{E}_{\mathbb{Q}}[f^2] = o(1)$

property: exists a k-clique

separated

 $n \to \infty$

- These are natural *sufficient* conditions
- Won't cover: random optimization problems [Gamarnik, Jagannath, W '20; W '21; Bresler, Huang '21; Huang, Sellke '21; ...]

Prototypical Result: Planted Clique

Theorem (lower bound) If $k \le n^{1/2-\epsilon}$, for some $D = D_n = \omega(\log n)$,

- (Detection) no degree-D polynomial strongly separates \mathbb{P} , \mathbb{Q} [Hopkins '18; Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
- (Recovery) no degree-D polynomial has small MSE [Schramm, W '22]
- (Refutation) no degree-D polynomial strongly separates \mathbb{Q} , R_k [Kothari, Vempala, W, Xu '23]

Theorem (upper bound) If $k \ge cn^{1/2}$, for some $D = D_n = O(\log n)$,

- (Detection) some degree-D polynomial strongly separates \mathbb{P} , \mathbb{Q}
- (Recovery) some degree-D polynomial has small MSE
- (Refutation) some degree-D polynomial strongly separates \mathbb{Q} , R_k

Focus of This Talk

- Not the focus of this talk:
 - Failure of $O(\log n)$ -degree polynomials is "evidence" for inherent hardness
 - Relation to sum-of-squares, statistical query model, ...
 - State-of-the-art results for specific problems
- Instead:
 - Proof ideas for lower bounds (failure of all degree-D algorithms)

Reformulation as a Ratio

- **Detection**: to rule out strong separation of \mathbb{P} , \mathbb{Q} , suffices to show $\chi^2_{\leq D}(\mathbb{P}\|\mathbb{Q}) + 1 \coloneqq \max_{f \deg D} \frac{\mathbb{E}\mathbb{P}^{[f]}}{\sqrt{\mathbb{E}\mathbb{Q}^{[f^2]}}} = O(1) \qquad ||L^{\leq D}|| \text{ e.g. [Hopkins '18]}$
 - or $\chi^2_{\leq D}(\mathbb{P}'||\mathbb{Q}) = O(1)$ for conditional \mathbb{P}' [Bandeira, El Alaoui, Hopkins, Schramm, W, Zadik '22; Coja-Oghlan, Gebhard, Hahn-Klimroth, W, Zadik '22; Dhawan, Mao, W '23]
- **Recovery**: to rule out small MSE, suffices to show $\max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}\mathbb{P}^{[f \cdot x]}}{\sqrt{\mathbb{E}\mathbb{P}^{[f^2]}}} \ll \cdots \qquad x = \mathbb{1}_{1 \in \text{clique}}$
- **Refutation**: to rule out strong separation of \mathbb{Q} , R_k , suffices to construct a distribution $\widetilde{\mathbb{P}}$ supported on R_k , and show $\chi^2_{\leq D}(\widetilde{\mathbb{P}} || \mathbb{Q}) = O(1)$

Explicit Solution

- In any case, our goal is to upper-bound something of the form
 - $\operatorname{Adv}_{\leq D} \coloneqq \max_{f \operatorname{deg} D} \frac{\mathbb{E}_{\mathbb{P}}[f \cdot y]}{\sqrt{\mathbb{E}_{\mathbb{H}}[f^2]}}$
 - For detection: y = 1, $\mathbb{H} = \mathbb{Q}$
 - For recovery: y = x, $\mathbb{H} = \mathbb{P}$
- Choose a basis $\{h_{\alpha}\}$ for degree-D polynomials, expand $f(A) = \sum_{\alpha} \hat{f}_{\alpha} h_{\alpha}(A)$
- Define $c_{\alpha} = E_{\mathbb{P}}[h_{\alpha} \cdot y]$ and $P_{\alpha\beta} = E_{\mathbb{H}}[h_{\alpha} \cdot h_{\beta}]$
- Conclude:

$$Adv_{\leq D} = \max_{\hat{f}} \frac{c^{\top} \hat{f}}{\sqrt{\hat{f}^{\top} P \hat{f}}} = \sqrt{c^{\top} P^{-1} c}$$

When \mathbbmss{H} is a Product Measure...

- Recall: $\operatorname{Adv}_{\leq D} \coloneqq \max_{f \operatorname{deg} D} \frac{\mathbb{E}_{\mathbb{P}}[f \cdot y]}{\sqrt{\mathbb{E}_{\mathbb{H}}[f^2]}} = \sqrt{c^{\top}P^{-1}c}$ • $c_{\alpha} = \mathbb{E}_{\mathbb{P}}[h_{\alpha} \cdot y], P_{\alpha\beta} = \mathbb{E}_{\mathbb{H}}[h_{\alpha} \cdot h_{\beta}]$
- If \mathbb{H} has independent coordinates (product measure), choose $\{h_{\alpha}\}$ to be an orthonormal basis of polynomials: $\mathbb{E}_{\mathbb{H}}[h_{\alpha} \cdot h_{\beta}] = \mathbb{1}_{\alpha=\beta}$
 - P = I, $Adv_{\leq D} = ||c||$
 - Gives low-degree lower bounds for detection: P vs product measure Q [Hopkins, Steurer '17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17; ...]
- This talk: what to do when $\mathbb H$ is not a product measure
 - Recovery: $\mathbb{H} = \mathbb{P}$ (mixture of product measures) [Schramm, W '22]
 - Planted-vs-planted testing, e.g. distinguish 1 planted clique vs 2 planted cliques [Rush, Skerman, W, Yang '23; Kothari, Vempala, W, Xu '23]

Overview

- I'll cover two approaches
 - Jensen trick [Schramm, W '22; ...]
 - Tensor decomposition [W '23]
- I'll present these two in a unified way (credit: Jon Niles-Weed)
- Setup
 - Goal: lower bound on $E_{\mathbb{H}}[f^2] = ||f||^2$
 - Inner product / norm for functions: $\langle f, g \rangle \coloneqq \mathbb{E}_{\mathbb{H}}[f \cdot g], ||f|| \coloneqq \sqrt{\langle f, f \rangle}$
 - For orthonormal basis $\{t_{\gamma}\}, \|f\|^2 = \sum_{\gamma} \langle t_{\gamma}, f \rangle^2$
 - For orthonormal set $\{t_{\gamma}\}, \|f\|^2 \ge \sum_{\gamma} \langle t_{\gamma}, f \rangle^2$

Blueprint

- Example: III is planted clique distribution $A = X \lor Z$
- Write f(A) = g(X, Z); every f induces some g
- Choose some orthonormal set of functions $\{t_{\gamma}(X, Z)\}$
- $||f||^2 = ||g||^2 \ge \sum_{\gamma} \langle t_{\gamma}, g \rangle^2 =: ||w||^2 \quad w_{\gamma} \coloneqq \langle t_{\gamma}, g \rangle = \mathbb{E}_{X,Z} [t_{\gamma} \cdot g]$

clique edges iid Bernoulli(1/2)

- How does w depend on \hat{f} ? • $w = M\hat{f}$ where $M_{\gamma\alpha} = \langle t_{\gamma}, h_{\alpha} \rangle$ Recall $f(A) = \sum_{\alpha} \hat{f}_{\alpha} h_{\alpha}(A)$
- Will need explicit left inverse M^+ for M, i.e., $M^+M = I$

More Details: Planted Clique

clique edges iid Bernoulli(1/2)

- Example: \mathbb{H} is planted clique distribution $A = X \lor Z$
- Fourier characters $\alpha \subseteq {\binom{[n]}{2}}, \ \chi_{\alpha}(A) = \prod_{(i,j)\in\alpha} (-1)^{A_{ij}}$
- $\{\chi_{\alpha}(\mathbf{Z})\}$ are orthonormal, $\{\chi_{\alpha}(\mathbf{A})\}$ are not
- Choose $h_{\alpha}(A) = \chi_{\alpha}(A), |\alpha| \le D$ -- basis for f
- Choose $t_{\gamma}(X, Z) = \chi_{\gamma}(Z), |\gamma| \le D$ -- orthonormal set of functions
- Fortunately, *M* is upper-triangular: M_{γα} := ⟨t_γ, h_α⟩ = 0 unless γ ⊆ α
 Can find explicit inverse M⁺ = M⁻¹
- Adv_{$\leq D$} $\leq ||c^{\top}M^{-1}||$

Tensor Decomposition

- Given $n \times n \times n$ tensor $T = (1 + \delta)a_1^{\otimes 3} + \sum_{j=2}^r a_j^{\otimes 3}$ (P)
 - $a_j \in \{\pm 1\}^n$ iid Rademacher
- Goal: recover a_{11}
- Poly-time when $r \ll n^{3/2}$ [Ma, Shi, Steurer '16; Ding, d'Orsi, Liu, Tiegel, Steurer '22]
- Theorem (informal) [W '23]: low-degree MMSE is small when $r \ll n^{3/2}$, trivial when $r \gg n^{3/2}$
- Recall: suffices to upper-bound

$$\max_{f \text{ deg } D} \frac{\mathrm{E}_{\mathbb{P}}[f \cdot a_{11}]}{\sqrt{\mathrm{E}_{\mathbb{P}}[f^2]}}$$

More Details: Tensor Decomposition

- Recall: $T = (1 + \delta)a_1^{\otimes 3} + \sum_{j=2}^r a_j^{\otimes 3}$, $a_j \in \{\pm 1\}^n$ iid Rademacher
- Write f(T) = g(a); every f induces some g
- Choose $\{h_{\alpha}(T)\}$ monomial basis -- basis for f
- Choose $t_{\gamma}(a) = \chi_{\gamma}(a)$ Fourier characters -- orthonormal set (basis)
- Some freedom to choose left inverse M^+
 - Left inverse: procedure for finding $\{h_{\alpha}(T)\}$ -coefficients given $\{t_{\gamma}(a)\}$ -coefficients
 - Fortunately a simple recursive construction for M^+ works
- Adv $\leq D \leq \|c^\top M^+\|$

Comments

- Other methods not mentioned in this talk:
 - Exact constant-degree MMSE for spiked Wigner via AMP [Montanari, W '22]
 - Annealed Franz-Parisi potential / low-overlap chi-squared [Bandeira, El Alaoui, Hopkins, Schramm, W, Zadik '22]
- Open question: random regular graphs?

Thanks!