Average-Case Computational Complexity of Tensor Decomposition

Alex Wein

University of California, Davis Department of Mathematics

Tensor Decomposition

Basic algorithmic primitive with applications in:

- Phylogenetic reconstruction
 [MR05]
- Topic modeling [AFHKL12]
- Community detection [AGHK13,HS17,AAA17,JLLX20]
- Learning Gaussian mixtures [HK13,GHK15,BCMV14,ABGRV14]

- Independent component analysis [GVX14]
- Dictionary learning [BKS15,MSS16]
- Multi-reference alignment
 [PWBRS19]

Tensors

Order-2 tensor: matrix $M = (M_{ij})$ Order-3 tensor $T = (T_{ijk})$

Rank-1 (symmetric) order-2 tensor vv^{\top} $(vv^{\top})_{ij} = v_i v_j$ $v \in \mathbb{R}^n$ Rank-1 (symmetric) order-3 tensor $v^{\otimes 3}$ $(v^{\otimes 3})_{ijk} = v_i v_j v_k$

 \boldsymbol{n}

Random Tensor Decomposition

Given a rank-r order-3 tensor

$$T = \sum_{i=1}^{r} a_i^{\otimes 3} \qquad a_i \in \mathbb{R}^n$$

the goal is to recover the components a_1, \ldots, a_r

Assume random components $a_i \sim \mathcal{N}(0, I_n)$ succeed with high probability

method of moments

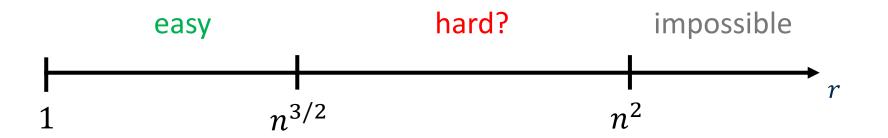
$T = \sum_{i=1}^{r} a_i^{\otimes 3} \qquad a_i \sim \mathcal{N}(0, I_n)$

Prior Work

Algorithmic results: SoS [GM15, Ma-Shi-Steurer'16], spectral [HSSS16, DOLST22], ...

All known poly-time algorithms require $r \ll n^{3/2} \ll$ hides polylog factor

Information-theoretically possible when $r \le cn^2$ [BCO14] c = constant



Q: is this hardness inherent?

Statistical-Computational Gaps

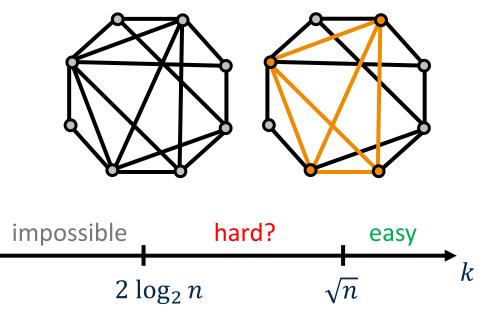
Many statistical problems have "hard" regimes sparse PCA, compressed sensing, community detection, tensor PCA, ...

No average-case complexity theory

Instead:

- Reductions from planted clique
- Lower bounds in restricted models
- Optimization landscape

Planted clique: G(n,1/2) + {k-clique}



Tensor Decomposition: Difficulties

Which lower bound framework?

- Reduction out of reach?
- Statistical query (SQ) model not applicable (no iid samples)
- Sum-of-squares (SoS) hardness of refutation [BBKMW21]
- Optimization landscape what function to optimize? [GZ19, BGJ20, CMZ22]
- Low-degree polynomials (LDP) this talk

Tensor Decomposition: More Difficulties

 $T = \sum_{i=1}^{r} a_i^{\otimes 3}$

- Issue of symmetry which component to recover?
- Existing SQ/SoS/LDP lower bounds leverage hardness of testing vs iid "null" a few exceptions [Schramm-W'22, Koehler-Mossel'21]
- Testing rank-r tensor vs iid tensor is easy when $r \ll n^3$
- But decomp hard when $r \gg n^{3/2}$

G(n,1/2) vs G(n,1/2) + {k-clique}
G(n,1/2) vs G(n,1/2) + {k-clique}
Mard
hard

$$k$$

 k

Solving the Issue of Symmetry

Define a new model: "largest component recovery"

$$T = (1 + \delta)a_1^{\otimes 3} + \sum_{i=2}^r a_i^{\otimes 3} \qquad a_i \in \{\pm 1\}^n \text{ unif. at random}$$

Goal: recover/estimate $a_{11} \coloneqq (a_1)_1$ relation to tensor PCA

Hardness of the above problem implies hardness of decomposing

$$\sum_{i=1}^{r} \lambda_{i} a_{i}^{\otimes 3} \qquad \lambda_{i} \in [1, 1+\delta] \text{ arbitrary}, \qquad a_{i} \in \{\pm 1\}^{n} \text{ unif. at random}$$

Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials f in the entries of

$$T = (1 + \delta)a_1^{\otimes 3} + \sum_{i=2}^r a_i^{\otimes 3} \qquad a_i \in \{\pm 1\}^n \text{ unif. at random}$$

Degree-D minimum mean squared error:

$$\text{MMSE}_{\leq D} \coloneqq \inf_{f \text{ deg } D} \mathbb{E}_a[(f(T) - a_{11})^2]$$

Theorem (W. '22) Fix any $\epsilon > 0$, $\delta > 0$

- (Easy) If $r \le n^{3/2-\epsilon}$ then $\text{MMSE}_{\le O(\log n)} \to 0$ as $n \to \infty$
- (Hard) If $r \ge n^{3/2+\epsilon}$ then $\text{MMSE}_{\le n^{\Omega(1)}} \to 1 \text{ as } n \to \infty$

Why LDP (Low-Deg Poly) Framework?

Algorithms captured by $O(\log n)$ -deg poly: spectral, AMP, local, SQ, ... LDP lower bounds rule out certain known approaches

Great track record of predicting stat-comp gaps LDP lower bounds give rigorous "evidence" for hardness

- Some counterexamples: Gaussian elimination, lattice basis reduction, ...
- But these algorithms tend to be "brittle"

Testing [Hopkins-Steurer'17, HKPRSS17, ...], estimation [Sw22], optimization [GJw20, ...]

Connections to circuit complexity [Gamarnik-Jagannath-W'22]

Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials f in the entries of

$$T = (1 + \delta)a_1^{\otimes 3} + \sum_{i=2}^r a_i^{\otimes 3} \qquad a_i \in \{\pm 1\}^n \text{ unif. at random}$$

Degree-D minimum mean squared error:

$$\text{MMSE}_{\leq D} \coloneqq \inf_{f \text{ deg } D} \mathbb{E}_a[(f(T) - a_{11})^2]$$

Theorem (W. '22) Fix any $\delta > 0$, $\epsilon > 0$

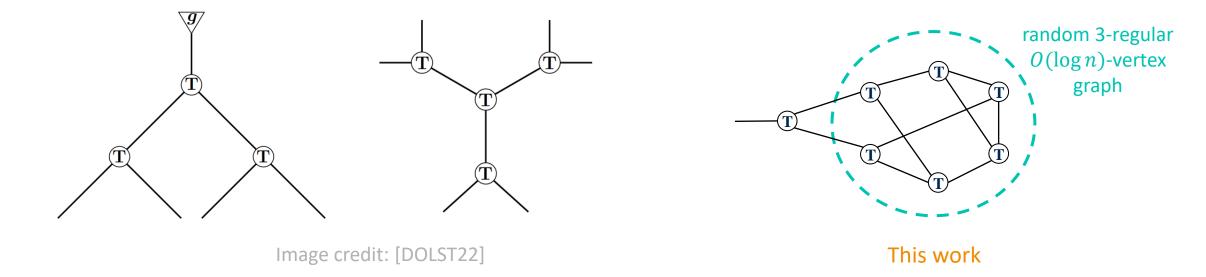
• (Easy) If $r \le n^{3/2-\epsilon}$ then $\text{MMSE}_{\le O(\log n)} \to 0$ as $n \to \infty$

• (Hard) If $r \ge n^{3/2+\epsilon}$ then $\text{MMSE}_{\le n^{\Omega(1)}} \to 1 \text{ as } n \to \infty$

Upper Bound: LDP Succeeds

Idea: "spectral methods from tensor networks"

[Hopkins-Schramm-Shi-Steurer'16, Moitra-W'19, Ding-d'Orsi-Liu-Steurer-Tiegel'22]



Degree- $O(\log n)$ polynomial implies quasipoly-time $n^{O(\log n)}$ algorithm

Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials f in the entries of

$$T = (1 + \delta)a_1^{\otimes 3} + \sum_{i=2}^r a_i^{\otimes 3} \qquad a_i \in \{\pm 1\}^n \text{ unif. at random}$$

Degree-D minimum mean squared error:

$$\mathrm{MMSE}_{\leq D} \coloneqq \inf_{f \deg D} \mathbb{E}_{a}[(f(T) - a_{11})^{2}]$$

Theorem (W. '22) Fix any $\delta > 0, \epsilon > 0$

• (Easy) If $r \le n^{3/2-\epsilon}$ then $\text{MMSE}_{\le O(\log n)} \to 0$ as $n \to \infty$

• (Hard) If $r \ge n^{3/2+\epsilon}$ then $\text{MMSE}_{\le n^{\Omega(1)}} \to 1 \text{ as } n \to \infty$

Lower Bound: Baby Example

Observe scalar $t = \sum_{i=1}^{r} a_i$ $a_i \in \{\pm 1\}$ unif. at randomGoal: estimate a_1 $\sup_{f} \frac{\langle c, \hat{f} \rangle}{\sqrt{\hat{f}^{\top} P \hat{f}}} = \sqrt{c^{\top} P^{-1} c}$ Want to show $\operatorname{Corr}_{\leq D} \coloneqq \sup_{f \deg D} \frac{\mathbb{E}[f(t)a_1]}{\sqrt{\mathbb{E}[f(t)^2]}} = o(1)$ $f(t) = \sum_{d=0}^{D} \hat{f}_d t^d$

First attempt:

- Numerator linear in \hat{f} $\mathbb{E}[f(t)a_1] = \sum_{d=0}^{D} \hat{f}_d \mathbb{E}[t^d a_1] =: \langle c, \hat{f} \rangle$
- Denominator quadratic in \hat{f}

$$\mathbb{E}[f(t)^2] = \sum_{d,d'=0}^D \hat{f}_d \hat{f}_{d'} \mathbb{E}[t^d t^{d'}] =: \hat{f}^\top P \hat{f}$$

$$t = \sum_{i=1}^{r} a_i \qquad a_i \in \{\pm 1\}$$

want $\frac{\mathbb{E}[f(t)a_1]}{\sqrt{\mathbb{E}[f(t)^2]}} \leq \cdots$

Lower Bound: Baby Example

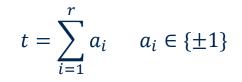
$$\sum_{d=0}^{D} \hat{f}_{d} t^{d} = f(t) = g(a) = \sum_{U \subseteq [r]} \hat{g}_{U} a^{U} \quad \longleftarrow \quad a^{U} \coloneqq \prod_{i \in U} a_{i}$$
$$(a)^{2} = \|\hat{a}\|^{2} \quad \text{orthonormal: } \mathbb{E}\left[a^{U} a^{U'}\right] = \mathbb{1}_{U = U'}$$

Claim: $\mathbb{E}[f(t)^2] = \mathbb{E}[g(a)^2] = \|\hat{g}\|^2$

Claim: $\hat{g} = M\hat{f}$ for some matrix *M*

Claim: suffices to construct an explicit left-inverse M^+ s.t. $M^+M = I$

$$\sup_{f} \frac{\mathbb{E}[f(t)a_{1}]}{\sqrt{\mathbb{E}[f(t)^{2}]}} = \sup_{\hat{f}} \frac{\langle c, \hat{f} \rangle}{\|M\hat{f}\|} = \sup_{\hat{f}} \frac{c^{\mathsf{T}}M^{+}M\hat{f}}{\|M\hat{f}\|} \le \sup_{\hat{g}} \frac{c^{\mathsf{T}}M^{+}\hat{g}}{\|\hat{g}\|} = \|c^{\mathsf{T}}M^{+}\|$$



Constructing the Left-Inverse

$$\sum_{d=0}^{D} \hat{f}_d t^d = f(t) = g(a) = \sum_{U \subseteq [r]} \hat{g}_U a^U$$

Recall: $\hat{g} = M\hat{f}$ want M^+ s.t. $M^+M = I$

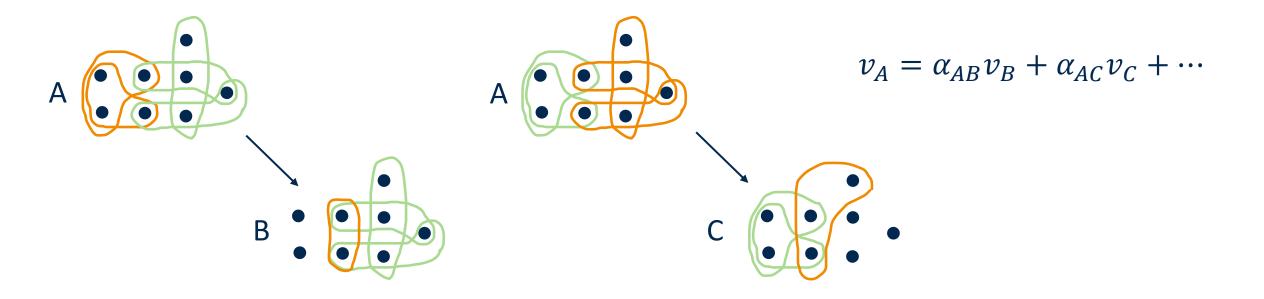
In other words: $M^+\hat{g} = \hat{f}$ whenever $\hat{g} = M\hat{f}$ In other words: given (valid) \hat{g} , recover \hat{f} $t = a_1 + a_2 + a_3 + a_4$

Proof by example: $g(a) = a_1 a_2 a_3 + a_1 a_2 a_4 - 2a_1 a_3 - 2a_3 a_4 + \cdots \qquad f(t) = ??$ r = 4, D = 3 $\frac{1}{6}t^3 = a_1 a_2 a_3 + a_1 a_2 a_4 + \cdots + \frac{5}{3}(a_1 + a_2 + a_3 + a_4)$

Wrapping Up the Lower Bound

Conclusion:
$$\operatorname{Corr}_{\leq D} \coloneqq \sup_{f \operatorname{deg} D} \frac{\mathbb{E}[f(t)a_1]}{\sqrt{\mathbb{E}[f(t)^2]}} \leq ||c^\top M^+|| =: ||v||$$

For the true model, v is indexed by hypergraphs and defined recursively reminiscent of cumulants in [Schramm-W'22]



Thanks!

Comments

First concrete lower bound for random tensor decomposition low-degree polynomial threshold matches best known algorithms

Results extend to tensors of any order $k \ge 3$, threshold is $r \sim n^{k/2}$

Future directions: Gaussian components, structured tensors

Open: is "generic" tensor decomposition strictly harder than random (k = 3)?

