Average-Case Computational Complexity of Tensor Decomposition

Alex Wein

University of California, Davis
Department of Mathematics

Tensor Decomposition

Basic algorithmic primitive with applications in:

- Phylogenetic reconstruction [MR05]
- Topic modeling [AFHKL12]
- Community detection [AGHK13,HS17,AAA17,JLLX20]
- Learning Gaussian mixtures [HK13,GHK15,BCMV14,ABGRV14]
- Independent component analysis [GVX14]
- Dictionary learning [BKS15,MSS16]
- Multi-reference alignment
[PWBRS19]

Tensors

Order-2 tensor: matrix $\quad M=\left(M_{i j}\right)$
Order-3 tensor

$$
T=\left(T_{i j k}\right)
$$

Rank-1 (symmetric) order-2 tensor $v v^{\top} \quad\left(v v^{\top}\right)_{i j}=v_{i} v_{j}$ $v \in \mathbb{R}^{n}$

Rank-1 (symmetric) order-3 tensor

$$
v^{\otimes 3} \quad\left(v^{\otimes 3}\right)_{i j k}=v_{i} v_{j} v_{k}
$$

Random Tensor Decomposition

Given a rank-r order-3 tensor

$$
T=\sum_{i=1}^{r} a_{i}^{\otimes 3} \quad a_{i} \in \mathbb{R}^{n}
$$

the goal is to recover the components a_{1}, \ldots, a_{r}
Assume random components $a_{i} \sim \mathcal{N}\left(0, I_{n}\right)$
succeed with high probability

Prior Work

$$
T=\sum_{i=1}^{r} a_{i}^{\otimes 3} \quad a_{i} \sim \mathcal{N}\left(0, I_{n}\right)
$$

Algorithmic results: SoS [GM15, Ma-Shi-Steurer'16], spectral [HSSS16,DOLST22], ...
All known poly-time algorithms require $r \ll n^{3 / 2}$ << hides polylog factor Information-theoretically possible when $r \leq \mathrm{Cn}^{2}{ }_{[B C O 14]} \quad \mathrm{C}=$ constant

Q: is this hardness inherent?

Statistical-Computational Gaps

Many statistical problems have "hard" regimes
sparse PCA, compressed sensing, community detection, tensor PCA, ...
No average-case complexity theory Instead:

- Reductions from planted clique
- Lower bounds in restricted models
- Optimization landscape

Tensor Decomposition: Difficulties

Which lower bound framework?

- Reduction - out of reach?
- Statistical query (SQ) model - not applicable (no iid samples)
- Sum-of-squares (SoS) - hardness of refutation [Bbkmw21]
- Optimization landscape - what function to optimize? [GZ19, BGJ20, CMz22]
- Low-degree polynomials (LDP) - this talk

Tensor Decomposition: More Difficulties

Issue of symmetry
which component to recover?

$$
T=\sum_{i=1}^{r} a_{i}^{\otimes 3}
$$

Existing SQ/SoS/LDP lower bounds leverage hardness of testing vs iid "null" a few exceptions [Schramm-W'22, Koehler-Mossel'21]

- Testing rank-r tensor vs iid tensor is easy when $r \ll n^{3}$
- But decomp hard when $r \gg n^{3 / 2}$

Solving the Issue of Symmetry

Define a new model: "largest component recovery"

$$
\begin{aligned}
& T=(1+\delta) a_{1}^{\otimes 3}+\sum_{i=2}^{r} a_{i}^{\otimes 3} \quad a_{i} \in\{ \pm 1\}^{n} \text { unif. at random } \\
& \text { I: recover/estimate } a_{11}:=\left(a_{1}\right)_{1} \quad \text { relation to tensor PCA }
\end{aligned}
$$

Hardness of the above problem implies hardness of decomposing

$$
\sum_{i=1}^{r} \lambda_{i} a_{i}^{\otimes 3} \quad \lambda_{i} \in[1,1+\delta] \text { arbitrary, } \quad a_{i} \in\{ \pm 1\}^{n} \text { unif. at random }
$$

Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials f in the entries of

$$
T=(1+\delta) a_{1}^{\otimes 3}+\sum_{i=2}^{r} a_{i}^{\otimes 3} \quad a_{i} \in\{ \pm 1\}^{n} \text { unif. at random }
$$

Degree-D minimum mean squared error:

$$
\operatorname{MMSE}_{\leq D}:=\inf _{f \operatorname{deg} D} \mathbb{E}_{a}\left[\left(f(T)-a_{11}\right)^{2}\right]
$$

Theorem (W. '22) Fix any $\epsilon>0, \delta>0$

- (Easy) If $r \leq n^{3 / 2-\epsilon}$ then $\mathrm{MMSE}_{\leq o(\log n)} \rightarrow 0$ as $n \rightarrow \infty$
- (Hard) If $r \geq n^{3 / 2+\epsilon}$ then MMSE $_{\leq n \Omega(1)} \rightarrow 1$ as $n \rightarrow \infty$

Why LDP (Low-Deg Poly) Framework?

Algorithms captured by $O(\log n)$-deg poly: spectral, AMP, local, SQ, ... LDP lower bounds rule out certain known approaches
[BBHSL21]
Great track record of predicting stat-comp gaps
LDP lower bounds give rigorous "evidence" for hardness

- Some counterexamples: Gaussian elimination, lattice basis reduction, ...
- But these algorithms tend to be "brittle"

Testing [Hopkins-Steurer'17, HKPRSSS17, ..], estimation [Sw22], optimization [GJW20, ...]
Connections to circuit complexity [Gamarnik-Jagannath-w'22]

Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials f in the entries of

$$
T=(1+\delta) a_{1}^{\otimes 3}+\sum_{i=2}^{r} a_{i}^{\otimes 3} \quad a_{i} \in\{ \pm 1\}^{n} \text { unif. at random }
$$

Degree-D minimum mean squared error:

$$
\text { MMSE }_{\leq D}:=\inf _{f \operatorname{deg} D} \mathbb{E}_{a}\left[\left(f(T)-a_{11}\right)^{2}\right]
$$

Theorem (W. '22) Fix any $\delta>0, \epsilon>0$

- (Easy) If $r \leq n^{3 / 2-\epsilon}$ then MMSE $_{\leq O(\log n)} \rightarrow 0$ as $n \rightarrow \infty$
- (Hard) If $r \geq n^{3 / 2+\epsilon}$ then MMSE $_{\leq n^{\Omega(1)}} \rightarrow 1$ as $n \rightarrow \infty$

Upper Bound: LDP Succeeds

Idea: "spectral methods from tensor networks"
[Hopkins-Schramm-Shi-Steurer'16, Moitra-W'19, Ding-d'Orsi-Liu-Steurer-Tiegel'22]

Image credit: [DOLST22]

This work

Degree- $O(\log n)$ polynomial implies quasipoly-time $n^{O(\log n)}$ algorithm

Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials f in the entries of

$$
T=(1+\delta) a_{1}^{\otimes 3}+\sum_{i=2}^{r} a_{i}^{\otimes 3} \quad a_{i} \in\{ \pm 1\}^{n} \text { unif. at random }
$$

Degree-D minimum mean squared error:

$$
\operatorname{MMSE}_{\leq D}:=\inf _{f \operatorname{deg} D} \mathbb{E}_{a}\left[\left(f(T)-a_{11}\right)^{2}\right]
$$

Theorem (W. '22) Fix any $\delta>0, \epsilon>0$

- (Easy) If $r \leq n^{3 / 2-\epsilon}$ then MMSE $_{\leq o(\log n)} \rightarrow 0$ as $n \rightarrow \infty$
- (Hard) If $r \geq n^{3 / 2+\epsilon}$ then MMSE $_{\leq n^{\Omega(1)}} \rightarrow 1$ as $n \rightarrow \infty$

Lower Bound: Baby Example

Observe scalar

$$
t=\sum_{i=1}^{r} a_{i} \quad a_{i} \in\{ \pm 1\} \text { unif. at random }
$$

Goal: estimate a_{1}

$$
\sup _{f}^{\prime} \frac{\langle c, \hat{f}\rangle}{\sqrt{\hat{f}^{\top} P \hat{f}}}=\sqrt{c^{\top} P-1 c}
$$

Want to show $\quad \operatorname{Corr}_{\leq D}:=\sup _{f \operatorname{deg} D} \frac{\mathbb{E}\left[f(t) a_{1}\right]}{\sqrt{\mathbb{E}\left[f(t)^{2}\right]}}=o(1) \quad f(t)=\sum_{d=0}^{D} \hat{f}_{d} t^{d}$

First attempt:

- Numerator linear in \hat{f}

$$
\mathbb{E}\left[f(t) a_{1}\right]=\sum_{d=0}^{D} \hat{f}_{d} \mathbb{E}\left[t^{d} a_{1}\right]=:\langle c, \hat{f}\rangle
$$

- Denominator quadratic in \hat{f}

$$
\mathbb{E}\left[f(t)^{2}\right]=\sum_{d, d^{\prime}=0}^{D} \hat{f}_{d} \hat{f}_{d^{\prime}} \underbrace{\mathbb{E}\left[t^{d} t^{d^{\prime}}\right]}_{P_{d, d^{\prime}}}=: \hat{f}^{\top} P \hat{f}
$$

$$
t=\sum_{i=1}^{r} a_{i} \quad a_{i} \in\{ \pm 1\}
$$

Lower Bound: Baby Example

want $\frac{\mathbb{E}\left[f(t) a_{1}\right]}{\sqrt{\mathbb{E}\left[f(t)^{2}\right]}} \leq \cdots$

$$
\sum_{d=0}^{D} \hat{f}_{d} t^{d}=f(t)=g(a)=\sum_{U \subseteq[r]} \hat{g}_{U} a^{U} \longleftarrow a^{U}:=\prod_{i \in U} a_{i}
$$

Claim: $\mathbb{E}\left[f(t)^{2}\right]=\mathbb{E}\left[g(a)^{2}\right]=\|\hat{g}\|^{2}$
Claim: $\hat{g}=M \hat{f}$ for some matrix M
Claim: suffices to construct an explicit left-inverse M^{+}s.t. $M^{+} M=I$

$$
\sup _{f} \frac{\mathbb{E}\left[f(t) a_{1}\right]}{\sqrt{\mathbb{E}\left[f(t)^{2}\right]}}=\sup _{\hat{f}} \frac{\langle c, \hat{f}\rangle}{\|M \hat{f}\|}=\sup _{\hat{f}} \frac{c^{\top} M^{+} M \hat{f}}{\|M \hat{f}\|} \leq \sup _{\hat{g}} \frac{c^{\top} M^{+} \hat{g}}{\|\hat{g}\|}=\left\|c^{\top} M^{+}\right\|
$$

$$
t=\sum_{i=1}^{r} a_{i} \quad a_{i} \in\{ \pm 1\}
$$

Constructing the Left-Inverse

$$
\sum_{d=0}^{D} \hat{f}_{d} t^{d}=f(t)=g(a)=\sum_{U \subseteq[r]} \hat{g}_{U} a^{U}
$$

Recall: $\hat{g}=M \hat{f} \quad$ want M^{+}s.t. $M^{+} M=I$
In other words: $\quad M^{+} \hat{g}=\hat{f} \quad$ whenever $\quad \hat{g}=M \hat{f}$
In other words: \quad given (valid) \hat{g}, recover $\hat{f} \quad t=a_{1}+a_{2}+a_{3}+a_{4}$
Proof by example: $g(a)=a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}-2 a_{1} a_{3}-2 a_{3} a_{4}+\cdots \quad f(t)=$??

$$
r=4, D=3 \quad \frac{1}{6} t^{3}=a_{1} a_{2} a_{3}+a_{1} a_{2} a_{4}+\cdots+\frac{5}{3}\left(a_{1}+a_{2}+a_{3}+a_{4}\right)
$$

Wrapping Up the Lower Bound

Conclusion: $\quad \operatorname{Corr}_{\leq D}:=\sup _{f \operatorname{deg} D} \frac{\mathbb{E}\left[f(t) a_{1}\right]}{\sqrt{\mathbb{E}\left[f(t)^{2}\right]}} \leq\left\|c^{\top} M^{+}\right\|=:\|v\|$
For the true model, v is indexed by hypergraphs and defined recursively reminiscent of cumulants in [Schramm-W'22]

$$
v_{A}=\alpha_{A B} v_{B}+\alpha_{A C} v_{C}+\cdots
$$

Thanks!

Comments

First concrete lower bound for random tensor decomposition low-degree polynomial threshold matches best known algorithms

Results extend to tensors of any order $k \geq 3$, threshold is $r \sim n^{k / 2}$
Future directions: Gaussian components, structured tensors
Open: is "generic" tensor decomposition strictly harder than random $(k=3)$?

